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AMtract--The functional similarity between Fax~n relations (for moments of the appropriate transport 
flux) and singularity solutions has been noted in the past. For rigid particles (and perfect conductors etc.) 
it has been noted in the literature that the root of this similarity is linked to the Lorentz reciprocal theorem. 
However, the duality applies even to more general two-phase problems such as a viscous drop in another 
solvent, with the relevant singularity distribution taken from the exterior solution. Although two-phase 
Fax~n relations are available for various particle shapes, until now, the root of this duality has not been 
demonstrated explicitly. The application of the duality is illustrated by the derivation of new Faxrn 
relations for ellipsoidal inclusions. 

1. I N T R O D U C T I O N  

Many interesting particle interaction problems have not been considered rigorously because the 
hydrodynamics, at least as expressed in the classical works, appear intractable. Typically, rigorous 
models are developed only for spheres and the results are extrapolated to nonspherical shapes by 
the use of empirical shape factors. Despite the availability of supercomputers, three-dimensional 
flow in an unbounded fluid region, a central problem of microhydrodynamics of suspensions, is 
still beyond the reach of "direct" numerical methods such as finite elements and finite differences. 

One possible approach is to divide the particle-particle interaction domain into "long-range" 
and "near-neighbor" regions. The near-neighbor region is bounded but requires an appropriate 
numerical solution (one possibility will be presented in a subsequent paper). The long-range region 
obviously occupies most of the parameter space, but fortunately, even for nonspherical particles, 
this region can be treated analytically by asymptotic methods such as the "method of reflections". 
It must be emphasized here that explicit examples of the "method of reflections", as developed in 
standard texts such as Happel & Brenner (1973), use special properties of spheres, such as the 
addition theorem for spherical harmonics, and are not directly applicable to other shapes. 
However, an alternate but equivalent approach based on a multipole expansion of disturbance 
fields combined with the use of the Fax~n relations for the coefficients is now available. (The 
method is equivalent for spheres because Lamb's general solution is equivalent to a multipole 
expansion and the Fax~n laws are equivalent to addition theorems). It is interesting that Fax~n 
derived his well-known relations for the force and torque on a sphere by manipulation of Lamb's 
general solution and thus his method cannot be readily generalized. Derivation of the Fax~n 
relations for particles of arbitrary shape was first done by Brenner (1964) using the Lorentz 
reciprocal theorem, and all subsequent works in this area (e.g. Rallison 1978) have followed this 
approach. 

In filtration theory, the capture efficiency is one of the key model parameters. The dividing 
trajectory which delineates the capture region can be determined quite accurately from the 
hydrodynamics of the long-range region. The analyses described by Spielman (1977) can be readily 
extended to nonspherical shapes such as fibers and disks, with the Fax~n relations playing a central 
rote in determining the effect of particle orientation in the upstream region, on the dividing 

837 



83~ $ KIM and S.-Y LU 

trajectory. The Fax~n relations also play an important part in the development of effective 
constitutive equations for the transport properties of multiphase media (Batchelor 1974). 

Faxrn (1924) showed that the force and torque on a rigid sphere of radius a in an unbounded 
fluid of viscosity/x with an ambient flow v ~ are given by 

( a:) F=6rc#a I+--~V 2 v'~(0) and T=4rCl, ta3Vxv~(O), 

respectively. Extensions of Faxrn's original relations include expressions for higher-order moments 
such as the stresslet (Batchelor & Green 1972), expressions for ellipsoids (Brenner 1964; Rallison 
1978), expressions for a viscous spherical drop (Hetsroni & Haber 1970; Rallison 1978) and 
expressions for the heat output and (thermal) dipoles in the analogous heat conduction problems 
(Brenner & Haber 1984; Haber & Brenner 1984; O'Brien 1979). 

One intriguing aspect of the Faxrn relations is the functional similarity between them and certain 
singularity solutions, i.e. solutions for a specific boundary condition (the so-called conjugate field) 
expressed in terms of the Green's function. This duality has been noted in the past by Hinch (1977) 
and for rigid particles (and thus also for perfect conductors) its origin is readily demonstrated as 
shown by Kim (1985). However, this duality appears even in two-phase problems, such as Stokes 
flow past a viscous drop suspended in a different fluid or a particle imbedded in a matrix of a 
different thermal conductivity. For example, the Faxrn law for the force on a spherical drop of 
viscosity ~2 and radius a in a second fluid of viscosity #~ is (Hetsroni & Haber 1970) 

F = 4 7 z # ~ a ~  1-~ 2(3). +2) a2V: v~(0)' [1] 

where ). = #.,/#,. On the other hand, the exterior solution for the same drop in a uniform stream 
U can be constructed by the singula-ri~y method as a combination of the Stokes monopole (or 
stokeslet) and potential dipole located at the sphere center, i.e. 

2 + 3 2  I £ 2 )aW2]U. i (x )  v = U -  4 1 r # ~ a ~  1 + 2(3). + 8rr#~" [2] 

The divergence of the associated stress field may be written as 

2 + 32 I )" a2V2] U6(x). [3] V.o = 4rc/~a ~ 1 + 2(3)~ + 2) ] 

The functional similarity between [1] and [3] is striking for it suggests the not so obvious conclusion 
that even in two-phase problems, the functional form of the Faxcn law may be extracted given only 
the form taken by the exterior solution. It should also be noted that none of the prior derivations 
in the literature offer an explanation for the source of this duality. 

There are two reasons for pursuing this matter further. The first reason is pedagogical. Students 
notice this duality and naturally, want to know whether it is a fluke or whether one can derive 
it directly. The proof is straightforward (two lines) for rigid particles but, as will be seen presently, 
quite involved for viscous drops. A second reason is that singularity solutions are more general 
than solutions by separable-coordinate systems. Thus, using the duality, one can develop Fax~n 
relations to solve hydrodynamic interactions for particles of quite complex shape. As a case in 
point, we note that singularity solutions are known for geometries such as the point force outside 
a sphere, so one can develop Faxcn relations for rod-sphere assemblies and solve exactly the 
hydrodynamics of filtration by spherical collectors. 

In the subsequent sections, we show explicitly (for the general situation of arbitrary particle 
shape, no knowledge of the interior solution and for both Stokes flow and heat conduction) that 
this duality originates because the Fax~n relations are always the result of an integration involving 
generalized functions associated with the distribution of singularities of the exterior solution of the 
conjugate boundary-value problem. 
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2. THE HEAT CONDUCTION PROBLEM 

2.1. The general procedure 
We consider first the disturbance induced by the placement of a single particle of thermal 

conductivity k2 in a matrix of conductivity kl. The ambient field will be denoted by T~(x). Steady 
heat conduction is governed by Laplace's equation and it proves convenient to start with an integral 
representation for the temperature in which the double-layer potential has been eliminated: 

1 ki-k fs 1 T°ut(x) = 4~ kz (n'VT°'~t)l~--x, fdS(x') if x ~ matrix, 

k'-k' fs Tin(x) = 4~ ~ (n. VTout) dS(x~) if x e particle. [4] 

The multipole expansion of [4] requires knowledge of the multipole moments, 

k2 - kl f 
k2 Js q" n x,x, . . ,  x, dS(x,). 

p 

The first moment 

kz - k l ;  s S = ~ q 'nx,  dS(x,) 
P 

is the thermal dipole and appears in the theories for the effective conductivity of the two-phase 
medium (Jeffrey 1973). Our objective is to show that the functional form of the Fax6n relation for 
the dipole may be obtained from the singularity solution of the exterior field for the particle in 
the linear temperature field G'x. 

The first part of the development follows the lines presented in O'Brien (1979). We start with 
Green's second identity applied to the regiOh between the particle and a large surface S~ enclosing 
the particle: 

fs (T, q2- T~q,).ndS = fs (T2qx ~ T,q:~).ndS, [5] 
a~ p 

where T~ and T2 are two temperature fields and ql and q: are the associated heat fluxes. We let 

Tl(x) = Ti(x) - G" x [6a] 

and 

T~(x) = r ( x ) -  T" (x), [6b] 

where Tt denotes the temperature field for the particle placed in the linear field G" x and T is the 
(unknown) temperature field that results when the particle is placed in the ambient field T=(x). 

The integral over S= vanishes in the limit as S~ is expanded to infinity because of the decay in 
the temperature and flux fields. In addition, the exterior fields in the surface integral over Sp may 
be replaced with the interior fields, by using the continuity in the temperature and flux fields. (Note 
that gradients of kT~, kT, G. x and T oo are continuous.) Thus in terms of interior fields, 

fs (Tzq, - Tiq2)-n dS = 0, [7] 
P 

with ql = -k2VTi + ktG and ch = - k , V T  + ktVT ~. 
We now apply the divergence theorem to obtain 

fv ( V T 2 -  VT, "q2) dV = 0, [8] @ q~ 

so that upon substitution of the expressions for TI and Tz, 

( k , -  k,) I _  VT.G dV = (k, - k,_) ( VTI'VT ~ dV. [9] 
a vp , I v  p 
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The 1.h.s. of this equation yields the dipole so that 

S ' G  = (k, - k2) ~ VTE'VT': dV. [10] 
d Vp 

Now at this point, if the interior solution is available, one takes the obvious route by evaluating 
the r.h.s, of  [10] [as done by O'Brien (1979) for the sphere]. However, this obvious approach misses 
the more general statement. 

We may expand the r.h.s, of [10] as follows: 

(k,-k2) f VTt.VT~dV=k, f VT,'VT~dV - 
Vp Vp 

=k, f VTI'VT~dV - 
v; 

=k, f VTK.VT': d V -  
v; 

=k, f VTI'VT'~dV - 
v; 

k: f VTI'VT:~ dV 
v; 

k, f V.(VT 1T~)dV 

kE fs n'VTI T~ dS 
t ~  

kt [ n'VTI T ~ dS 
Js 

=k,f Vr,.Vr+dV-k,f V'(VTIT':)dV 
v; v; 

= -k, f~ v'-T,r~ dV-kt(f~ - f~;)Vr,VT ~ dv. 
The notation V~- and V~ indicates explicitly whether the interior or exterior solution is employed. 
Note that the last two volume integrals cancel each other because 

( f  - f  ~ V T , ' V T ~ d V = ( f  v - ; v  )V ' (Tt 'VT~)dV 
r; jv; / ; ; 

= ( f s  - ~  ) n'(T' 'VT~)dS =O" 
; j s;_ 

(The gradient of  T ~ is continuous across Sp.) Thus [10] may be rewritten as 

S'G=-k~[  V2Tz T ~ dV. [11] 
d v; 

Now if the exterior solution is written as a singularity solution, then V2TI becomes the 
corresponding distribution of  singularities, G" V6 (x - ¢) where 6 (x) is the Dirac delta function. An 
integration by parts of  this generalized function leads to the same functional of  VT~({). For 
example, the exterior solution for a sphere in a linear field may be written as (Jeffrey 1973) 

Tt G ' x + 4 n a 3  k s - k l  1 = - - G - V - -  [12 ]  
k2 + 2kz 4rcr 

so that 

V2TI = - 4 h a  3 k2 - k-------L G.V6(x). 
k2 + 2kl 

The Fax6n relation for the dipole follows from [1 I] as 

k 2 - k I . 
S = -4r~a ~ k~-~ 2-k, k ,  VT ~ (0). 

2.2. The ellipsoidal inclusion 
We now consider an ellipsoidal inclusion of conductivity k 2 with its surface given by 

X 2 y 2  ~2 

[13] 

[14] 
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(a >t b >/c), in a matrix of conductivity kt. Given the ambient temperature field G'x,  the exterior 
solution may be written in the singularity form 

[ f ( ¢ )  dA(~), [15] T = G'x - (M .G).V JE 4=~lx- ¢1 

where M is a second-order, diagonal tensor with elements given by 

M~,= - - ~ k ~ ( k : - k O  ( k 2 - k O  (a :+t )A( t )  +abcJ  , [161 

with A(t) = ~/(a" + t)(b '- + t)(c 2 + t) and M22 and M33 obtained by cycling the dependence on a, 
b and c. Physically, M specifies the linear relation between the dipole and the ambient field, i.e., 
for the linear field, S = M-G. The function f ( ¢ )  is the density function for the distribution of the 
singularities. 

As in Stokes flow (Kim 1985) the distribution is over the interior of the focal ellipse E(¢), i.e. 
the ellipse in the plane z = 0 with semiaxes aE and bE given by 

at  = a 2 - c  +" and b~ = b 2 - c  2. 

The density function is defined over the focal ellipse as 

3q with q ( x , y ) = x / l - x 2 / a 2 - y 2 / b [ .  f (~) = f (x, y)  = 2naEb-------~r 

From the duality we obtain the following Fax~n relation for the dipole of an ellipsoidal inclusion: 

S = M. f t f ( ¢ )  VT=(~) dA(¢). [17] 

As shown in Kim & Arunachalam (1987), the integral over the focal ellipse may be recast as an 
expansion in Brenner's (1964) operator D"= a+'d/dx2+ b20/dy2+ c"a/dz'- using the identity 

2n-lfEq~-3 (2n)t [(1 0 )n-tsi 1 
~-~'~a'~-b~ (P (~) dA(~) = 2"n----T" ~ ; O  q3(0) 

which holds for any harmonic function <P(¢).t Therefore, the Faxrn relation may also be written 
as 

[-/1 O \ s i n h D - I v T ~ 0  s = 3 M . L / 5 7 5 ) - - 5 -  j (). [18] 

Although we have restricted our discussion to the dipole, this reciprocity also applies to higher 
order moments and the singularity solution for 

T ~c, = H k l k 2 "  . .  k n X k l  X k  2 • . . X k ,  T. 

3. T H E  F A X I ~ N  L A W  F O R  V I S C O U S  D R O P S  

The derivation of the Fax~n relations for a viscous drop is quite analogous to that shown in 
the previous section for the heat conduction problem. The temperature field, heat flux and Green's 
second identity are replaced respectively by the velocity field, stress field and the Lorentz reciprocal 
theorem (Happel & Brenner 1973). The essential ideas will be demonstrated by deriving the Fax~n 
relation for the stresslet and the force. The derivation presented here should be compared with that 
of Hetsroni & Haber (1970) and Rallison (1978). 

We consider the disturbance induced by the placement of a viscous Newtonian drop of viscosity 
/~2 in a Newtonian fluid of viscosity/~. We take both fluids to be incompressible. The ambient 
velocity field will be denoted by v:~(x). The governing equations are the Stokes equation 

- V p  +/~V2v = 0 [19] 
and the equation of continuity, 

V- v = 0. [20J 

tThe operator on the r.h.s, of the preceding equation is defined symbolically by its power series in D:. 
M.F. 13 6---H 
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We will derive the Fax~n relation for the stresslet, 

S = (o" - -a / )d  V = ~ [(a • nx, + x,a .n) - 2#,(vn + nv)] dS(x,), [211 
Vp p 

where the first equality is the fundamental definition of the stresslet as the difference of the actual 
stress and that obtained using the constitutive law of the exterior fluid. The stresslet is the key 
suspension mechanical quantity in the expression for the effective viscosity of the two-phase 
medium as reviewed by Batchelor (1974). We will show that the functional form of the Fax~n 
relation may be obtained from the singularity solution of  the exterior field for the drop in the linear 
velocity field E-x. We start with the Lorentz reciprocal theorem applied to the region between the 
particle and the large surface S~ enclosing the particle: 

fs (V,.~2.n-v2.a,.n)dS= fs (V,.a:.n-v2.~,.n)dS, [22] 

where v~ and v: are any two velocity fields that satisfy the governing equations [19] and [20] and 
a~ and a2 are the associated stress fields, i.e. a = - p 8  +2/~le. We will use the notation 
e = (Vv + (Vv)r)/2 for the rate-of-strain field. 

We let 

and 

v2(x ) = v ( x )  - v~'(x), [23] 

where v~ denotes the velocity field for the particle placed in the linear field E.x  and v is the 
(unknown) velocity field that results when the particle is placed in the ambient field v:~(x). 

As before, the integral over S~ vanishes and the exterior fields in the surface integral over Sp 
may be replaced with the interior fields, with proper attention paid to the jump conditions across 
the particle surface. All velocity fields and E.n and e ~. n are continuous across Sp, while a . n  and 
~rl. n suffer a jump equal to y n where y is the surface tension of the fluid-drop interface. Thus in 
terms of  interior fields, 

s(Vl "a2"n - -  v z ' a  I .n) dS = 0. [24] 

Note that there are no contributions from the surface tension term because v.n = 0 on Sp. 
We now apply the divergence theorem to obtain 

fv  ( V v l -  Vv.,:a 0 d V  = 0 : a  2 [25] 

so that upon substitution of the expressions for v t, v,, at and a2, 

r,:fv ( a - 2 # l e ) d V = f  e :~ : (a , -2#te , )dV.  [26] 

The 1.h.s. of  this equation yields the stresslet while the r.h.s, may be rearranged as follows: 

E :S  = f e~:a, dV- f e'~:2~,,e, ~- 

v l ( x )  = v l ( x )  - E . x  [ 2 3 ]  

= f v  V ' ( v ~ ' a ~ ) d V - f  e~:2#~e~dV ;- v;- 

= fs v~'(a"n)dS- fv e~:2/~'e 'dV 

= fs v~'(a"n)dS- f~ e=~:2p'e'dV' 
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where again the surface tension term makes no contribution--this time because v = is a solenoidal 
field. We continue as follows: 

f,,; e~ :2#'e' dV 

= v~ (V'~rl) d V +  v; %- 

=f, dr. 
As in the heat conduction problem, the last two volume integrals cancel each other because 

z; ov ;  / ; ,j v; / 

- (fs -fs) 
since a ~.n is continuous across Sp. Therefore, 

E.S  = f v ~°. (V.a,) d Z. [27] 
J IF+ 

P 

Now V'cr I is replaced by the appropriate distribution of singularities, E . V r ( x - ¢ ) .  An 
integration by parts of this generalized function leads to the same functional ofe®(~). For example, 
Cox's (1969) exterior solution for a spherical drop in the linear field may be rewritten as a 
singularity solution so that 

- ~ # , a  4 3 5 2 + 2  I ~ 2(52 )" 1 V.a, = 1+ +2ia2V 2 E.V~(x). [281 

The integration by parts of [27] yields the Fax~n relation for the stresslet as 

S 4 352 + 2  1 2 2)a2V21 = -;rr#ma "=---7-. 1 + e*(0). [29] 
J 2 + I 2(52 + 

The Faxhn law for the force is obtained in the same manner from 

U 'F  = f v ~ ' ( v ' a 0 d V ,  [30] 
Jz 

where now ax is the stress field of the exterior solution for the viscous drop in the uniform stream 
U. For a spherical drop the specific result is the dual relation cited in section 1. 
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